Design of two- and three-element diffractive

Keplerian telescopes

Dale A. Buralli and G. Michael Morris

Design procedures for simple two- and three-element diffractive telescopes, suitable for monochromatic
applications, are described. We obtained the basic configuration for the two-element design analytically by
solving design equations to set the Seidel aberrations to target values. Computer optimization is used to
complete the design of the doublet and triplet telescopes. The two- and three-element designs exhibit
similar optical performance and diffraction efficiency. We show that diffraction-limited performance can
be obtained from these all-diffractive systems.

. Introduction

Recent advances in fabrication procedures such as
diamond machining,' photolithography,” and laser
writers® have made the production of high-efficiency
surface-relief diffractive lenses practical. These diffrac-
tive optical elements are also known as kinoforms,*
binary lenses,” or phase Fresnel lenses.® Because
these lenses operate by using the principles of diffrac-
tion, they are highly dispersive, although they can be
used in combination with conventional optical ele-
ments to form broadband imaging systems.”*° For
monochromatic operation, however, all-diffractive sys-
tems can provide an alternative to refractive—reflec-
tive systems. The phase functions defining the diffrac-
tive lenses can be designed to provide a high level of
aberration control from relatively simple systems.
Because these diffractive lenses are thin, surface-
relief structures, all-diffractive systems can weigh
much less than conventional refractive systems. Us-
ing diffractive elements can allow for the design of
systems with large collecting apertures. Also, these
surface-relief diffractive lenses can be easily repli-
cated from a master element.

We consider the design and performance of simple
two- and three-element afocal diffractive telescopes to
be used with monochromatic illumination as an at-
tachment to a scanning imaging system, such as an
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active infrared system. We first present the design
equations for the correction of the Seidel aberrations
of a two-element telescope. The higher-order aberra-
tions are corrected by using lens design optimization
techniques. Section II also contains an analysis of an
optimized 5X system and a discussion of the pupil
aberrations of the telescope. Manufacturing consider-
ations may require the use of a three-element design,
as discussed in the next section. We conclude, in
Section IV, by comparing the performance of the two-
and three-element designs and analyzing the consid-
erations for choosing between them:.

Il. Design of a Two-Element Keplerian Telescope

The simplest afocal system is two lenses separated by
the sum of their focal lengths. Since the telescopes
that concern us are not for visual applications, but
rather as attachments for scanning imaging systems,
we require that the telescope have an external exit
pupil. Thus a Keplerian design of two positive ele-
ments is needed, as shown in Fig. 1. With two
elements we have four degrees of freedom at the
third-order design stage, namely, the substrate bend-
ing and fourth-order phase coefficient of each lens.
(The second-order phase coefficient is determined by
the focal length.) We can use these construction
parameters to control four Seidel aberrations. Since
diffractive lenses have a Petzval contribution of zero,
the four degrees of freedom provide complete control
of the Seidel aberrations.

We are interested in rotationally symmetric lenses
that can be described by a phase function of the form

() = 2w Ar? + Gr* + - - ), 1)

where r is the radial coordinate in the tangent.plane
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Fig. 1. Layout of the two-element diffractive telescope.

to the lens. From basic Fourier optics' we see that
the power of the lens is given by

b = —2)\A, (2)

where \ is the wavelength of the light.

The Seidel wave-front aberration polynomial W as
a function of the normalized object height ~ and the
nogmalized polar pupil coordinates p and &, is given
by

Wk, p, cos d,) = %Sp* + %Suhp® cos &, + 1Syh’p’ cos’ ¢,
+ Y4 Sy + S)h2p® + YSvh®p cos &, 3)

where the coefficients S-S, are the Seidel sums for

spherical aberration, coma, astigmatism, Petzval cur-

vature, and distortion, respectively. With the stop in

contact with the diffractive lens, the Seidel sums for

the first diffracted order are given as follows:'**°
Spherical aberration,

S y4¢3 2 2 4,
1= (1 + B* + 4BT + 3T*% - 8\Gy%; (4a)
Coma,
212
- 'H
Sy = =~ ; (B +2T), (4b)
Astigmatism,
Sy = H; (4c)
Petzval curvature,
Sy =0 (4d)
Distortion
Sy =0. (4e)

In Eqs. (4) y is the paraxial marginal ray height at the
lens, H is the Lagrange invariant, and B and T are
bending and conjugate parameters defined as
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where c,, is the curvature of the lens substrate and
and u’ are the paraxial angles of the paraxial mar-
ginal ray entering and leaving the lens, respectively.

If the stop is not at the lens, the total contribution
to the Seidel aberrations is given by use of the
stop-shift formulas'®

S* =8, (6a)

y
Sy* =8 +=8S, (6b)

Yy
Sw* = S +2z Sp + (2)2 S, (6¢c)

¥ v
Srv* = SIV) (6d)
Sy* =8y + y (3Syr + S + 3 (2)2 Su + (5'—-)3 S (6e)
Y y y

In Egs. (6) the starred quantities refer to the aberra-
tions after moving the stop away from the lens, and ¥
is the highest height of the paraxial chief ray at the
lens.

With these equations we can complete a third-order
design of a two-element telescope. The stop is in
contact with the objective lens, so the stop-shift
equations need only be applied to the stop-in-contact
aberration coefficient contributions from the eyepiece
lens. At the eyepiece a paraxial ray trace shows that
the stop-shift parameter is

M - 1)
Yobiobi

y

3= )
where M is the paraxial afocal magnification given by.
M = yobj/yeye = —f:)b‘/feye’ = _d)eye/d)obj’ yobj iS the paraXial
marginal ray height at the objective, y,,, is the parax-
ial marginal ray height at the eyepiece, ¢,; is the
power of the objective lens, ¢, is the power of the
eyepiece lens, f = 1/¢ is the focal length of each lens,
and % is the paraxial field angle in object space. Since
the Petzval sum is zero for an all-diffractive system,
we have only four third-order aberrations to control.
We also have four degrees of freedom left in the
design: the bending and the fourth-order phase coefli-
cient of each lens. We can solve a system of four
equations in these four unknowns to provide the
third-order design. As target values for the Seidel
aberrations we choose zero for the spherical aberra-
tion, coma, and astigmatism and sufficient distortion
to provide a constant real-ray angular magnifica-
tion.'” This distortion is needed for coupling to a
constant-angular-velocity scanning system that will
provide the final real image from the telescope. We
find this necessary amount of distortion by consider-
ing the angular aberration that is necessary for a
real-ray angular magnification of 6'/6. We denote the
paraxial chief ray angle in object space by # and in
image space by #'. Then the real-ray angles as a
function of the fractional object height 2 are 6 =
tan ' (@h) and 8’ = tan"*(Z'h). The necessary angular
aberration « is the difference between the desired
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relationship 8’ = M6 and the paraxial relationship
tan(0’) = M tan(6) = Mzh or equivalently 8’ =
tan"'(Mzh). Thus

o = M6 — tan™'(Mzh) = M tan™'(@h) — tan"'(Mzh). 8)

We can expand the tan™ functions in Eq. (8) to find
the necessary amount of third-order distortion. Using

the relation tan™'(z) = z — 2*/8 + 2%/5 — . . ., we find
that
~—37, 3 37732, 3
I I
1
=§M(M2—-1)'123h3+.... 9)

The Seidel sum Sy is related to the angular aberration
aby S, = (2H/u")a.® UsingH = - y,, 7' = M4,
and Eq. (9), we find the necessary third-order distor-
tion to be

2

Sv=3

yobﬁa(l - M. (10)
Solving the set of four equations,

2
S, =8;=8x=0, Sy= gynbﬁa(l - M3, (11)

for the four unknowns B, B,,,, G, and G,,, we find
that the solutions are

-2+ 8M)

By, = 33 (12a)
By = :H—)’ (12b)
Gy = % J (12¢)
G, = P ML TM D) (12d)

72 M1 - M)

At this stage of the design the performance is limited
by higher-order aberrations, usually fifth-order spher-
ical aberration and astigmatism for systems of practi-
cal speed and field angle.

As an example of the performance that can be
expected from these simple two-element telescopes at
the third-order design stage, we designed a telescope
with a magnification M = —5 for use at \, = 10.6 pm
with an entrance pupil diameter of 100 mm. The
system specifications, resulting from the design proce-
dure given here, are given as follows:

fory = 200 mm, fiye = 40 mm,

R, = 189.5 mm, R0 = 720 mm,

A,y = —0.2358 mm, A, = -1.1792mm™3,

Gy = 2775 X 107" mm™, G, = 3.469 x 107° mm™,
clear aperture,,; = 100 mm, clear aperture,, = 53.6 mm,
fl#4 = 2.0, fl#,, = 0.75.
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In the above specifications R_, is the radius of
curvature of the lens substrate and f/ # is the construc-
tion f~number of the lens, which is defined as the focal
length divided by the clear aperture. Figure 2 shows
the wave-front aberrations for the telescope that is
evaluated on-axis and at an object space half-field
angle of 4 deg. These curves show the general trend
that the major uncorrected aberrations are fifth-
order spherical aberration and astigmatism.

The fifth-order aberrations can be corrected by
adding a sixth-order phase term (Hr®) to each lens
and optimizing these coefficients by using an optical
design software program. We used the program SUPER-
0sL0" and optimized the two sixth-order phase func-
tion terms by using a simple merit function consist-
ing of the squared sum of the fifth-order aberration
coefficients. The resulting sixth-order phase coeffi-
cients are H,, = 7.368 X 10"* mm™® and H,, =
~2.161 x 10°° mm™. Figure 3 shows the rms wave-
front aberration for field angles of up to 4 deg in
object space. As is evident from the figure this simple
telescope provides diffraction-limited performance
across the field. Figure 4 shows a plot of the image
space field angle 8’ as a function of the object space
field angle 6. This linear relationship is due to distor-
tion, as discussed above.

Since this telescope is designed to be coupled to a
scanning imaging system, the telescope needs to have
acceptable pupil imagery. For this purpose an analy-
sis of the third-order pupil aberrations is instructive.
For diffractive lenses the Seidel pupil aberration
coefficients are most easily derived first by evaluating
the stop-in-contact contribution and then by applying
the stop-shift equations for the pupil aberrations.
The stop-in-contact forms may be found by taking the
limit as the refractive index goes to infinity for a
refractive thin lens. This technique has proved effec-

@

OPD (waves)

(b)

OPD (waves)

Fig. 2. Wave-front aberration as a function of the pupil coordi-
nate for the two-element telescope corrected for Seidel aberrations:
(a) on axis; (b) an object field point 4 deg off-axis.
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Fig. 3. Root-mean-square wave-front error for the optimized
two-element telescope with an additional sixth-order phase term.

tive in evaluating the image aberrations. The pupil
Petzval curvature is equal to the image Petzval
curvature and is thus equal to zero for all-diffractive
systems. We denote the pupil aberrations by a barred
symbol. With the aperture stop in contact the pupil
aberrations are as follows™:

Pupil spherical aberration,

S =0; (13a)
Pupil coma,

Su=0; (13b)
Pupil astigmatism,

Su=0; (13c)
Pupil distortion,

-1

S, = 5 Hy"s'B. (13d)

The stop-shift equations for the pupil aberrations are
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Fig. 4. Magnitude of the image space chief ray angle as a function
of the magnitude of the object space chief ray angle for the
optimized two-element telescope.

T Y = ¥\
Su* = S +§(SV +Sp + ; Sy, (14¢0)

S =8, + % S (14d)

As noted by Jamieson,” for an afocal system the
correction of image coma and astigmatism implies the
correction of pupil astigmatism and coma. In addi-
tion, for these diffractive systems, the pupil Petzval
curvature, which is equal to the image Petzval curva-
ture, is zero. By using Eqs. (13) and (14), we found
the amount of pupil spherical aberration and coma
for a system designed according to Egs. (12) to be

- (1 -MyP*Q2-M
e - MM 00 15w
obj

—3
§.* =¥% o2 - 1), (15b)

Pupil coma causes the exit pupil to become elliptical
in shape and is unavoidable if the image distortion is
to have a prescribed value, since S; = S, — HAz>.
Pupil spherical aberration causes a lateral shift of the
exit pupil, which increases with the cube of the field
angle. For this telescope the amount of the shift is

1
27’

21 -MyE-M)

®pL3 — 3
Si*h Mo, h’. (16)

€ =

For the example telescope described in this section,
the maximum pupil shift (- = 1), as given by Eq. (16),
is —0.5744 mm. The value of the total real-ray pupil
spherical aberration is —0.6094 mm, which is close to
the third-order value. This pupil aberration is the
amount that the entrance pupil of the scanning
imaging system must be increased from its paraxial
value to accept the full-field beamwidth from the
telescope. If this amount of pupil aberration is too
large, the design could be redone at the third-order
stage with S in the merit function. In fact we can
envisage many other third-order designs by using
target values that are different from those imple-
mented here [Eq. (11)]. For example, if constant
real-ray angular magnification is not necessary, but
small pupil aberration is desired, a third-order design
could be found by solving S, = S; = S; = S, = 0.

Ill. Design of a Three-Element Telescope

As the example in the previous section demonstrates,
for most configurations there is not much room for
improvement in terms of performance by increasing
the number of diffractive lenses in the telescope.
However, the speed of the eyepiece lens may provide
some manufacturing problems. For example, in the
5X telescope described earlier, the eyepiece lens has a
construction f-number (the focal length divided by
clear aperture) of 0.75. The lens speed is related to the
width of the finest diffracting zone s, by

Smin = 2 N f1#, amn
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where A, is the design wavelength and f/# is the
construction f-number of the lens. For the example
telescope this means that the finest zone has a width
of ~ 16 pm. This zone width is, however, manufactur-
able by using current manufacturing technologies.™

By splitting the eyepiece into two separated ele-
ments, as depicted schematically in Fig. 5, we can
reduce the speed of each eyepiece lens and hence
increase the minimum zone width. However, the
speed of each element in the two-lens eyepiece can be
reduced only by a factor of ~2 from the speed of the
equivalent single-element eyepiece. This conclusion is
illustrated in Fig. 6, which shows the construction
f-number (focal length/clear aperture) of the two
lenses in the eyepiece relative to the f-number of the
single eyepiece lens (in this case f/0.75) as a function
of the back focal distance of the eyepiece. For this
exercise we assumed that the focal lengths of the two
eyepiece lenses are equal. The figure illustrates the
general conclusion that only a factor of ~2 in the
f-number (and hence in the minimum zone width)
can be obtained by splitting the eyepiece lens.

We have found that a three-element diffractive
telescope with sixth-order phase functions can be
optimized for diffraction-limited performance, just as
for the two-element designs. For most three-element
systems a simple merit function consisting of the sum
of the squared third- and fifth-order image aberration
coefficients is sufficient for a lens design program
optimization. The variables for the optimization are
the bendings and the fourth- and sixth-order phase
coefficients of the three lenses. The rms wave-front
error as a function of the field angle for a three-
element telescope is shown in Fig. 7. This telescope
has the same first-order properties as the two-
element telescope that is described in the previous
section. Each lens in the eyepiece has a focal length of
70 mm and a construction fnumber of approximately

f/1.5.

IV. Comparison of Two- and Three-Element Designs

As we see from the previous sections, little is to be
gained in terms of increased optical performance by
using a three-element design rather than a two-
element telescope. There may be configurations of a
large field angle or faster objectives where the addi-
tional element is necessary to achieve the desired
performance. In situations like the one discussed in
this paper, where the two- and three-element perfor-
mances are essentially the same, the question is

—
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Objective Eyepiece

Fig.5. Layout of the three-element diffractive telescope.
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Fig. 6. The f-numbers of the two eyepiece lenses, normalized to
the f-number of the singlet eyepiece lens, as a function of the back
focal distance of the doublet eyepiece.

whether one configuration is preferred over the other
for reasons other than optical performance. One
consideration that we mentioned earlier is the manu-
facturability constraints that are imposed by the
small feature sizes of zones near the edge of the
lenses. This will probably not be much of a problem in
the 8-12-pum region but may be important if shorter
wavelengths and smaller diffracting zones are to be
used.

Another consideration is the overall diffraction
efficiency of the systems. For these reasonably fast
diffractive lenses, we expect the diffraction efficiency
to depart significantly from the scalar prediction of
unity as a result of the large wavelength-to-grating-
period ratios. For example, by using the DIFFRACT?
program from MIT Lincoln Laboratory, which calcu-
lates grating efficiencies by using rigorous electromag-
netic coupled wave theory, we found an empirical
formula for the local diffraction efficiency for diffrac-
tive lenses that are formed on a germanium substrate
with a \/4 antireflection coating. We obtained this
formula by using DIFFRACT to calculate the first-order
diffraction efficiency of a germanium substrate trans-
mission grating for a number of grating periods
corresponding to radial zones of the diffractive lens.
The relationship between grating frequency and ra-
dial position is found by rewriting approximation
(17). At any radial point r on the lens, the f-number at
that point is f/# = f/(2r), where f is the focal length.
By denoting the zone width at r by s, approximation
(17) can be rewritten as

roA
T (18)
0.020-
2 0.015-
3
2
o o.0f0f
o
= 0.005
" ] L 1 L 1 1 1
0008 =520 30 40

Field Angle (degrees)

Fig. 7. Root-mean-square wave-front error for the optimized
three-element telescope.



Fitting a line to the results of the DIFFRACT calculation
for first-order efficiency as a function of \//s, i.e., as a
function of r/f, yields the following empirical for-
mula:

ot ()fc) =1-032 (;) 19

In approximation (19) r is the radial coordinate on the
lens and fis the focal length of the lens. We calculated
approximation (19) by assuming a classical blazed
grating groove shape with a blaze height of A,/
(n — 1), where )\, is the design wavelength (10.6 pm
in this case) and n is the refractive index of the
substrate. Integrating approximation (19) over the
illuminated portion of each lens for each field position
gives the integrated total efficiency. For the examples
in this paper, the integrated efficiencies are as fol-
lows:

on-axis
Ndoublet — 0.896, MNtriplet = 0.897;
4 degrees off-axis

ndoublet = 0'814, T]triplet = 0‘818'

Thus we see the interesting result that the effects of
the reduced efficiency of the faster eyepiece lens in the
two-element telescope and of the increased number of
lenses in the three-element design are approximately
the same.

V. Conclusion

For monochromatic applications simple two- and
three-element diffractive Keplerian telescopes can
provide a diffraction-limited performance. The feasi-
bility of the two-element design depends on field
angle, lens speed, fabrication technique, and overall
diffraction efficiency. In many cases the two-element
design exhibits a performance and diffraction effi-
ciency that are similar to those of the three-element
design. If it can be manufactured, the two-element
design can provide high performance with a simple
layout, less weight, and fewer lenses to align.
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