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The connection between the diffractive behavior and the refractive behavior of kinoform lenses is inves-
tigated. The image-forming capabilities of the diffractive element are found to be expressed as an
interference pattern that is due to a set of associated refractive lenses corresponding to each zone of the
kinoform. The coefficient modulating the contribution of each refracting zone is determined. The term
linking the point-spread function of a refractive lens and a diffractive lens is also obtained. Spectral and
spatial aspects are compared as the diffractive element approaches the refractive limit. © 1997 Optical
Society of America
1. Introduction

Holographic elements are well known for their capac-
ity to realize complex operations not possible to carry
out with purely refractive elements. The ability to
manipulate the local amplitude and phase of an in-
coming wave has stimulated the use of holographic
elements in applications such as beam shaping and
optical pattern recognition, among others. A class of
surface-relief diffractive elements known as kino-
forms has been developed that behave as refractive
lenses under certain circumstances.1 A fundamen-
tal difference between these two lenses resides in
what defines the image-forming capabilities of each
element. On one hand, a refractive lens ~as implied
by its name! relies on the refraction effects that take
place when the incident light interacts with its sur-
face. In this case, light can be viewed as geometrical
rays obeying simple trigonometric relations. A dif-
fractive element, on the other hand, forms an image
by a coherent superposition of the light that comes
from each of its constituent zones. Although refrac-
tion also takes place, it is an interference effect that
determines the formation of each image. In theory,
a diffractive lens should perform exactly as a refrac-
tive one at a specific wavelength, thereby allowing
the design of optical systems of reduced weight and
more compactness. Furthermore, because fabrica-
tion techniques are under constant improvement,
mass-production costs are also declining. A large
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amount of chromatic aberrations, however, has re-
strained the extensive use of purely diffractive lenses
in broadband applications. In such instances, hy-
brid refractive–diffractive elements2 can be success-
fully integrated to compensate for chromatic
aberrations, with the diffractive element being used
instead of expensive flint glasses.
Although a diffractive lens fundamentally operates

through interference, it also combines refraction ef-
fects to some degree. The refractive limit is gener-
ally associated with the applicability of the laws of
geometrical optics in the sense that the dynamics of
image formation can be completely understood from a
ray picture. When one considers a diffractive lens, it
is apparent that refraction can be used to explain the
lens behavior when only one zone is present, strictly
speaking. For a greater number of zones, interfer-
ence becomes the primary factor in image formation.
The question then becomes how the diffractive nature
of the lens relates to the refractive effects that occur
in each zone, or how refractive properties combine to
yield the behavior of the diffractive lens. There has
been some recent interest3,4 in the transition from
diffractive to refractive behavior in micro-optical dif-
fractive elements, largely motivated by the introduc-
tion of a new class of lenses known as multiorder5 or
harmonic6 lenses. In this study we examine the be-
havior of diffractive lenses, with respect to both re-
fraction and interference effects, in an effort to clarify
how these two phenomena interrelate. Previous
studies have focused on gratings3 or the associated
grating picture of a diffractive lens together with nu-
merical simulations.4 We adopt a different ap-
proach that permits the treatment of diffractive
lenses as finite objects and at the same time yields
analytical results. In what follows, we investigate
the diffractive–refractive behavior of the diffractive
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lens in terms of the on-axis scalar field. We find that
the diffraction pattern of the holographic lens can be
seen as the interference of a number of associated
refractive lenses modulated by a complex coefficient.
In a specific case, the term linking the diffractive and
the refractive element point-spread function can be
determined explicitly.

2. Diffractive–Refractive Behavior

In this paper we focus on the paraxial design of a
diffractive lens,1 i.e., the parabolic blaze profile, be-
cause in this case it is possible to carry out useful
analytical calculations. For more complicated pro-
files it is not generally possible to obtain closed-form
solutions for the diffraction integral, and one has to
resort to numerical simulations. Thus, to gain a bet-
ter understanding of our problem we concentrate on
the parabolic lens design, which in addition to its
practical importance also allows us to demonstrate
clearly its diffractive–refractive behavior.
The phase function of a diffractive lens within a

paraxial design is written as

f~r! 5 2paSn 2
r2

2l0f
D , rn21 # r , rn, (1a)

rn
2 5 2l0fn, n 5 1, 2, 3, . . . , N, (1b)

where rn localizes the boundaries of each zone, r0 5 0
by definition, l0 is the design wavelength, f is the
focal length, N is the total number of zones, and
parameter a is given by

a 5 Sl0

l DFn~l! 2 1
n~l0! 2 1G , (2)

where n~l! is the index of refraction of the lens ma-
terial for a given wavelength l.
The diffractive lens defined by Eq. ~1! has a very

small thickness equal to l0y@n~l0! 2 1#, correspond-
ing to only a few wavelengths. This particular de-
sign cannot be used in broadband applications
because the focal dependence on wavelength as ex-
pressed by

fm 5
l0f
lm

, (3)

with m as an integer, causes the appearance of addi-
tional diffracted orders for l Þ l0. Therefore, there
is a reduction in efficiency for the main diffracted
order ~usually the first!, giving rise to a degradation
of the image quality. To address this problem, re-
searchers have proposed a lens design based on the
use of higher diffracted orders.5,6 The new scheme
involves the introduction of a parameter p, which
essentially determines a set of diffracted orders asso-
ciated with different wavelengths that come to a
single focus. Consequently, singlets can be achro-
matized for those certain values of incident wave-
length, although one cannot guarantee high
performance with even slight deviations from the de-
sign conditions. A higher-order diffractive lens can
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be defined by means of the following phase function:

f~r! 5 2papSn 2
r2

2l0fp
D , rn21 # r , rn, (4a)

rn
2 5 2l0fpn, n 5 1, 2, 3, . . . . (4b)

In addition to permitting diffractive singlet achro-
matization, a higher-order element also presents
larger zones, placing less stringent demands on fab-
rication. It has been recognized3,4 that the transi-
tion region from diffractive to refractive optics can be
readily understood through the concept of a higher-
order element, that is, a variable phase-height ele-
ment. The idea is very simple and applies not only
to lenses but also to gratings. Consider a diffractive
lens with constant design parameters: fix the clear
aperture, and increase parameter p in Eqs. ~4!. The
number of zones will then decrease as illustrated in
the sequence of Fig. 1. The refractive aspects of the
element become more and more important as p in-
creases, constituting what we would call a totally
refractive element when only one zone remains, pro-
vided the zone size is considerably larger than the
incident wavelength, as it is in many practical cases.
The higher-order lens suggests a general formula-

tion of a diffractive lens phase function that can be
written as follows:

f~r! 5 2paSgn 2
r2

2l0f
D , rn21 # r , rn, (5a)

rn
2 5 2l0fgn, n 5 1, 2, 3, . . . , (5b)

Fig. 1. Iterative process showing how the limits of a diffractive
kinoform and a purely refractive lens are obtained. Only a cross
section of phase function f~r! is illustrated. In each step the
semiaperture is kept constant while maximum phase transmission
2pap increases, where p is an integer. When the number of zones
N 5 1, we have a purely refractive lens. As N increases, with a
subsequent decrease in p, the diffractive properties of the element
become predominant.



where gn is a function of an integer argument. The
main reason for the generalization in Eqs. ~5! will
become clear in the following developments when the
refractive role of each zone is made evident. In par-
ticular, we have the conventional, gn 5 n, and the
higher-order, gn 5 pn, cases for the usual diffractive
lens designs.
To elicit the diffractive–refractive relation, we de-

velop some on-axis calculations based on the Fresnel
approximation to the diffraction integral7 given by

c~z! 5
2p exp~ikz!

ilz *
0

rN
exp@if~r!#expSiplzr2Drdr, (6)

where we have made use of the circular symmetry of
the elements under consideration and where rN is the
boundary of the outermost zone or the semiaperture
of the lens. Use of the phase function of Eqs. ~5! in
the diffraction integral yields the following, some-
what formidable, expression for the on-axis scalar
field:

cD~z! 5 2pSl0f
lzD (

n51

N

expHipF2agn 1 Sl0f
lz

2 aD
3 ~gn 1 gn21!GJ~gn 2 gn21!sincFSl0f

lz
2 aD

3 ~gn 2 gn21!G , (7)

where subscript D indicates a diffractive lens and
irrelevant phase terms were ignored.
By using Eq. ~6! we can also determine the scalar

field of a purely refractive lens with maximum phase
height 2paf0, given by

cR~z! 5 2pSl0f
lzDexpHipF2af0 1 Sl0f

lz
2 aDf0GJ

3 sincFSl0f
lz

2 aDf0G , (8)

with index R indicating a refractive lens. We note
that Eqs. ~7! and ~8! can be combined because the
summation over zones in the diffractive scalar field
can be seen as a sum over the field caused by local
refractive lenses. The result is

cD~z! 5 (
n51

N

expFi2pSl0f
lz
Dgn21G~gn 2 gn21!cR

n~z!, (9)

where cR
n is the phase function of a refractive lens of

maximum phase height such that f0 5 gn 2 gn21.
Because term gn 2 gn21 is directly related to each
single zone, the diffractive element can be seen as the
interference of N refractive lenses whose character-
istics are determined locally by each zone. Notice
that this case is different from a lens array, which is
more akin to a grating in which each period may be
constituted by a refractive lens.
The on-axis field that is due to each associated

refractive lens is modulated by the complex interfer-
ence term,

cl
n~z! 5 expFi2pSl0f

lzDgn21G~gn 2 gn21!, (10)

which couples the refractive field amplitude of each
zone. The expression of the scalar field as in Eq. ~9!
explicitly gives the contribution of each zone to form
the final interference pattern of the generalized dif-
fractive lens. In the case of a higher-order lens we
can see that

gn 2 gn21 5 pn 2 p~n 2 1! 5 p, (11)

implying that the refractive field associated with
each zone is independent of n and can be taken out of
the summation. If we write cR

n~z! 5 cR
p~z! to refer

to the higher-order lens, we can write Eq. ~9! as

cD~z! 5 cR
p~z! (

n51

N

p expFi2pSl0f
lzDp~n 2 1!G

5 cR
p~z!g~z!, (12)

where g~z! represents the summation of phase terms
over all zones and can be calculated exactly to be

g~z! 5 Np expFipSl0f
lzD~N 1 1!pGsinc@~l0fylz!Np#

sinc@~l0fylz!p#
.

(13)

It is also interesting to investigate how the point-
spread function ~PSF! of the diffractive element re-
lates to that of the refractive lens. For this purpose,
we consider a higher-order lens withmaximumphase
height 2pap and N zones. Infinite conjugate imag-
ing is assumed. The comparison to be carried out
here is with a refractive lens of maximum phase
height 2paNp and the same clear aperture as the
kinoform. After straightforward albeit somewhat
tedious calculations, which again are based on Eq.
~6!, we find that the PSF of the diffractive lens, ID~z!,
is written in terms of the PSF, IR~z!, of the refractive
lens as

ID~z! 5 IT~z!IR~z!, (14)

where term IT~z! relating the diffractive–refractive
limits can be written as

IT~z! 5 )
i51

b cos2@2i21p~l0fylz!p#

cos2$2i21p@~l0fylz! 2 a#p%
, (15)

assuming that N 5 2b for an integer b and )i51
b ai 5

a1a2 . . . ab. Notice that in Eq. ~14!, term IR~z! cor-
responds to the purely refractive limit illustrated in
Fig. 1. At l 5 l0 the transition coefficient Eq. ~15!
reduces to unity and the diffractive element behaves
essentially as a refractive lens. This is expected be-
cause both elements are identical at l0, except for a
modulo 2pp transformation rule. However, for a
wavelength detuning from the design, the transition
term becomes important and gives rise to those phe-
nomena that afflict a diffractive element such as re-
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duced efficiency and the appearance of additional
diffracted orders. These effects are illustrated in
Fig. 2 for what could be called a conventional diffrac-
tive element or p 5 1.
From the PSF results derived above, we now in-

vestigate the behavior of the diffractive lens as pa-
rameter p increases while Np remains fixed. This
corresponds to a sequence similar to the one depicted
in Fig. 1. In performing the calculations previously
described we have assumed an error-free diffractive
element. Although this is not entirely realistic, in
the presence of small errors the results should still be
valid. Some discussion of fabrication errors with re-
spect to the diffractive–refractive transition can be
found elsewhere.4
In Fig. 3 the evolution of the point-spread function

as a function of the number of zones is presented.
The behavior of the element can be analyzed from two
important aspects: spatial distribution and spectral
behavior. These characteristics of the diffraction
pattern are certainly related, but as the number of
zones decreases and p increases, they need not evolve
in a similar fashion. Indeed, we note in Fig. 3 that
as the diffractive lens tends to the refractive limit the
diffractive point spread function tends to the corre-
sponding refractive pattern. For instance, when the
number of zones decreases from 32 to 16, the total
energy on the first order is reduced while the second-
order focal point undergoes an increase in efficiency
followed by a dislocation toward the paraxial refrac-
tive focal point. Such a process continues as N de-
creases, indicating that the diffractive element tends
to recover the refractive focal point for the wave-

Fig. 2. PSF’s illustrating the dispersive nature of a diffractive
lens in comparison to a refractive one. The on-axis intensity is
shown for three wavelength values: l 5 0.5876 mm ~index of
refraction nD 5 1.5168 for BK-7 glass!, l 5 0.4861 mm ~nF 5
1.5143!, and l 5 0.6563 mm ~nC 5 1.5228!. The diffractive lens
was designed to operate at l0 5 0.5876 mm with a focal length of
50mm. In this case p5 1 andN5 32. The solid curve shows the
behavior at the design wavelength, which is identical for both
diffractive and refractive elements. Note the opposite sign of the
dispersion and the appearance of multiple orders.
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length in question. Such clustering indicates that,
spectrally, the tuning of parameter p in fact leads to
a more refractivelike diffractive lens, in accordance
with the idea that a higher order improves polychro-
matic behavior.5,6 In contrast, the spatial character-
istics of the point-spread function are also relevant
because they reflect the efficiency of each diffracted
order and consequently provide important informa-
tion on image contrast. As we can see in Fig. 3, even
though increasing p tends to reduce the contribution
of spurious orders, it seems that the diffracted lens

Fig. 4. Transition term IT~z!, Eq. ~15!, as the diffractive element
tends to the refractive limit. The same design parameters of Fig.
3 are adopted. In the purely refractive case, the transition coef-
ficient is identically equal to one. As seen here, the basic depen-
dence with the number of zones remains essentially unaltered,
except for a scaling term, up to N 5 2.

Fig. 3. Evolution of the PSF of a diffractive lens of 32 zones and
p 5 1 toward the refractive limit ~or N 5 1!. Design parameters:
l0 5 0.5876 mm, F 5 50 mm, and l 5 0.4861 mm. For a mean-
ingful comparison, product Np is set to a constant equal to 32.
Note that asN decreases ~p increases! the diffractive pattern tends
to approximate the spectral behavior of the refractive lens ~solid
curve!. However, even for N 5 2 the spatial intensity pattern is
considerably distinct from the refractive case.



exhibits intensity profiles that are very peculiar up to
the case in which only two zones are present. In this
extreme limit, we might say that although parameter
p tends to correct chromatic properties, it cannot cor-
rect the spatial distribution of the produced beam.
As a result, from the spatial point of view the kino-
form lens preserves its intrinsically diffractive nature
with any nonunity number of zones. Such a result
has also been verified numerically in other design
cases.4 This fact can bemademore evident in Fig. 4,
where a plot of IT~z!, Eq. ~15!, is shown for distinct
values of p. The basic dependence of the transition
term, except for a scaling factor, is unaltered for all
values of N.

3. Summary and Conclusions

The design of higher-order diffractive lenses poses the
problem of the diffractive–refractive behavior in cer-
tain kinoform elements. We have expressed the on-
axis scalar field of the diffractive lens in terms of an
interference pattern of associated refractive lenses
related to each individual zone and modulated by
a zone-dependent complex-valued coefficient. Al-
though for transverse fields the same idea should
apply, it is not possible to obtain closed-form solu-
tions as in the on-axis case. We have found that it is
also possible to express the point-spread function of
the diffractive lens as the product of a transition term
and the intensity pattern of a refractive lens. In this
form, the connection diffractive–refractive is immedi-
ately established.
Even though the refractive behavior becomes more

evident as the maximum phase height increases, the
diffractive lens preserves a unique spatial identity up
to the point at which only two zones are present but
tends continuously to the refractive spectral behav-
ior. This result has also been observed for gratings
by means of an altogether different method.3 Al-
though refractive elements without proper achroma-
tization may be acceptable in some situations, for
diffractive lenses there is greater difficulty because
the amount of chromatic aberrations is dramatic. If
the problem in question requires operation of a few
discrete wavelengths, higher-order diffractive lenses
provide an elegant solution. As the number of zones
decreases and higher values of maximum phase are
attained, the diffractive behavior approaches that of a
refractive lens but never completely reaches it; in
fact, forN5 2 the spatial intensity pattern of the lens
departs even more significantly from the refractive
behavior. Consequently, although intuitive, the
concept of a transition between diffractive behavior
and refractive behavior does not evolve identically in
the spatial-spectral sense. In broadband applica-
tions, diffractive optics seem more promising for use
as hybrid diffractive–refractive elements.
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